
The Cost of Stateless Network Functions in 5G
Umakant Kulkarni

Purdue University

ukulkarn@purdue.edu

Amit Sheoran

asheoran@alumni.purdue.edu

Sonia Fahmy

Purdue University

fahmy@purdue.edu

ABSTRACT
The adoption of a cloud-native architecture in 5G networks

has facilitated rapid deployment and update of cellular ser-

vices. An important part of this architecture is the implemen-

tation of 5G network functions statelessly. However, state-

lessness and its associated serialization and de-serialization

of data and database interaction significantly increase la-

tency. In this work, we take the first steps towards quan-

tifying the cost of statelessness in a cloud-native 5G sys-

tem. We compare the cost of different state management

paradigms, and propose a number of optimizations to reduce

this cost. Our preliminary results indicate that sharing user

state among 5G functions reduces the overall cost by on an

average of 10% in experiments with 100 to 1000 simultaneous

requests. Optimizations such as non-blocking calls and cus-

tom database APIs also reduce cost, albeit to a lower extent.

We believe that the paradigms proposed in this paper can aid

operators and software vendors as they design cloud-native

5G networks.

CCS CONCEPTS
•Computer systems organization→Cellular architec-
tures; Cloud computing; • Networks → Network man-
agement; Mobile networks.

KEYWORDS
Cloud-native architectures; 5G; Cellular networks; Stateless

Network Functions

ACM Reference Format:
Umakant Kulkarni, Amit Sheoran, and Sonia Fahmy. 2021. The Cost

of Stateless Network Functions in 5G. In Symposium on Architectures
for Networking and Communications Systems (ANCS ’21), December
13–16, 2021, Lafayette, IN, USA. ACM, New York, NY, USA, 7 pages.

https://doi.org/10.1145/3493425.3502749

ANCS ’21, December 13–16, 2021, Lafayette, IN, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9168-9/21/12.
https://doi.org/10.1145/3493425.3502749

1 INTRODUCTION
The 5G System (5GS) architecture (section 4 of [18]) rec-

ommends employing stateless network functions (NFs) or

microservices, interacting via service-based interfaces. One

way to follow this recommendation is by deploying 5G net-

work functions in a cloud-native fashionwith containers [20].

A network function in 5GS can operate statelessly by stor-

ing the current state of the end user device (referred to as

user equipment, or UE) in a remote database known as the

Unstructured Data Store Function (UDSF). However, this

statelessness comes at a performance cost.

The performance cost of statelessness corresponds to ad-

ditional processing and interaction with a remote database.

Specifically, in stateful deployments, 3GPP-defined proce-

dures simply store state in the cache ormainmemory, whereas

in stateless deployments, the current state is stored in the

database. A network function needs the current state when it

receives a trigger to modify the UE context (state). A stateless

NF fetches the latest state from the database (the UDSF), pro-

cesses the triggered request, and then updates the database

with the new state. Stateless implementations take a longer

time to process the request due to additional processing for

data storage and retrieval.

In this paper, we explore the design space of state man-

agement for 5G network functions, and quantify the cost of

different design choices using prototype experiments with an

open-source 5GS implementation. To the best of our knowl-

edge, this is the first work to take an in-depth look at the

performance overhead of stateless 5G network functions.

We investigate two types of stateless functions, procedurally

stateless and transactionally statelessness, and propose a

number of optimizations to mitigate the performance cost

of transactional statelessness. We find that state sharing

among 5G functions reduces the cost of transactional state-

lessness by an average of 10% in our experiments with 100 to

1000 simultaneous requests. Using non-blocking or custom

database APIs also reduces costs, albeit to a lower extent.

Optimizations proposed in this paper do not make changes

to the 3GPP [1] architecture and follow the design guidelines

of the N18 interface, as described in [14].

2 STATELESS 5GS FUNCTIONS
In this section, we partially explore the design space of state

management in 5GS, depicted in Figure 1.

73

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3493425.3502749
https://doi.org/10.1145/3493425.3502749
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3493425.3502749&domain=pdf&date_stamp=2022-01-18
Quincy Peng



ANCS ’21, December 13–16, 2021, Lafayette, IN, USA U. Kulkarni et al.

State Design 

Stateful Stateless

Procedural Transactional

Non-Blocking
AMF and UPF 

Shared
Database

All NFs Share AMF-SMF Share

Delete-Create
AMF API

Figure 1: Partial design space of state management
approaches in 5GS

Several system procedures provide 5G services to an end

user [17]. These procedures are executed as a sequence of

transactions that transfer the state of the UE from one func-

tion to the next in a service function chain. A transaction is

a message interaction between two functions that involves

exactly one request and its corresponding response. A trans-

action is triggered when one function sends a request to

another function, either to process the request or to update

the state. Transactions must ensure that state is synchronized

among all functions.

2.1 Procedural and Transactional
Statelessness

Statelessness among the 5G functions: Access and Mobility

Management Function (AMF), SessionManagement Function

(SMF), and User Plane Function (UPF), can be implemented

either at the procedural level or at the transaction level.

Procedural statelessness refers to storing the UE state in

the database at the end of a procedure. During the operation

of a procedure, the function stores the state into local cache

or memory. Once the entire procedure is completed, the

function updates the state in the database.

Transactional statelessness is more fine-grained: the func-

tion stores the UE state after completing each individual

transaction.

2.2 Drawbacks of Procedural Statelessness
Although procedural statelessness can speed up control-

plane signaling, it suffers from two important drawbacks.

First, all transactions in a given procedure must be processed

by the same instance. Thus, operators need to implement an

additional intermediate node to function as a load balancer.

This UE-aware load balancer routes the incoming control-

plane messages to the instance of a function containing the

UE state from previous transactions. Second, procedural state-
lessness is less resilient to node failures or function restarts

since a function may lose the state of the UE. Network func-

tions that precede it in the service chain need to re-transmit

the messages to recover. To avoid delays caused by such cas-

cading failures and to take advantage of fully distributed and

stateless functions, it may be beneficial to adopt transactional

statelessness. Therefore, we focus on better understanding

and reducing the cost of transactional stateless in the remain-

der of this paper.

2.3 Cost of Transactional Statelessness
All participating network functions in a stateless transac-

tion need to fetch the latest state from the remote database.

When an NF (𝑁𝐹1 in Figure 2a) receives an event trigger, it

requests the latest data required to process the event from

the database. After receiving the response from the database,

𝑁𝐹1 processes the request and may trigger a new request

to another NF (𝑁𝐹2) in the service function chain. 𝑁𝐹2 and

successive NFs in the service chain follow the same process.

When the last NF (say 𝑁𝐹𝑛) in the service function chain

processes the request, it stores the newly processed data in

the database and sends back the response to 𝑁𝐹𝑛−1. All NFs
from 𝑁𝐹𝑛−1 to 𝑁1 now receive responses, store data, and

respond in the reverse order until the very first NF (𝑁𝐹1)

in the service function chain receives the response from

𝑁𝐹2, stores the data in the database, and sends the response

back to 𝑁𝐹0. The number of messages exchanged with the

database is 2 × 𝑛 for the read operations plus 2 × 𝑛 for the

write operations, for a total of 4 × 𝑛 messages for a service

function chain of 𝑛 functions (where 𝑛 does not include the

triggering function 𝑁𝐹0).

3 REDUCING THE COST OF
TRANSACTIONAL STATELESSNESS

Shared database. In our example in Section 2.3, 𝑁𝐹1 and

𝑁𝐹2 independently write the state to the database. If NFs

can share the state in the database, it is sufficient for a single

NF to write the data to the database. In other words, if 𝑁𝐹2
writes the data on behalf of both itself and 𝑁𝐹1, then the

write operation by 𝑁𝐹1 is no longer required. If there are 𝑛

NFs in the service function chain, then the cost saved will

be the cost associated with 𝑛 − 1 database write operations.

Applying the above idea to cellular network functions,

we note that there is always a function in 4G or 5G that

maintains the latest and correct UE state. This role is played

by the packet gateway in the 4G architecture, and the Ses-

sion Management Function (SMF) in 5G, as the SMF is the

connecting link between the 5G control and user planes. As

described in section 6.2 of [18], the SMF receives access net-

work data from the AMF, and configures the UPF. Hence, the

state maintained by the AMF or UPF is a subset of the state

maintained by the SMF. We take advantage of this fact, and

propose transactional statelessness, sharing the state in the

database to reduce write operations.

74

Quincy Peng

Quincy Peng

Quincy Peng



The Cost of Stateless Network Functions in 5G ANCS ’21, December 13–16, 2021, Lafayette, IN, USA

NF1
Event

Trigger
Get data

Response

Process event trigger

Event triggered 
request

Store new state

Trigger
Response

Process event triggered request

Response with
new state

DB

Store new state

NF2

Response

Response

Get data
Response

(a) Transactional statelessness

AMF
PDU Session
Est. Request Get UE Context 

UE Context

Process request from RAN

Create SM 
Context

Store new
state of UE

Trigger
Response

Process Create SM
Context request

Create SM 
Context 

Response with

SMF DB

Get UE Context

Response
new UE state

UE Context

(b) Sharing among AMF and SMF

Start

Event Trigger

De-serialize data

Process event trigger

Is Non-Blocking

Run thread A Wait for response from DB
Send response 

for event trigger

Serialize data Send data
to DB

End

A

Serialize data

Send data to DB

Wait for response from DB

Yes

No

Read data from DB

End

(c) Non-blocking paradigm

Figure 2: Transactionally-stateless paradigms

Consider the example of the “Create SM Context” trans-

action, executed as a part of several 5G procedures. This

transaction is between the AMF and SMF, where the AMF

sends a request to the SMF when it receives a trigger from

the gNB (i.e., the cell tower). The SMF processes the request

received from the AMF and sends the response back. The pro-

cessing involves other interactions (e.g., with AUSF, UDM,

and PCF) by both the AMF and SMF, but we will omit these

for the purposes of this discussion.

Figure 2b depicts the “Create SM Context” transaction.

Upon receiving the request from the AMF, the SMF pro-

cesses it and writes the new UE state to the database. The

response to the AMF contains the same data that the SMF

has just stored into the database. When the AMF receives the

response from the SMF, it writes the same data to the data-

base and sends data back to the gNB. In other words, with

transactional statelessness, both functions store the same

data at the end of their respective transactions.

We propose that a single function store data on behalf

of both functions in this case. Specifically, the SMF writes

the data to the database and the AMF can later access that

same data. Hence, when a new request arrives as a part of

a new transaction, the AMF will fetch the data from this

shared database, which was written by the SMF in the earlier

transaction. This reduces the number of database writes by

one for each such transaction.

Non-blocking AMF and UPF. An alternative optimiza-

tion can be performed through parallelism. As defined in the

3GPP specifications [15, 16], 5G NFs share data or UE state by

sending JSON [6] payloads using a RESTAPI over the service-

based interfaces for processing calls or events. Additional

latency is introduced by serialization and de-serialization

of binary and JSON data, and converting it to a database-

compatible format, e.g., BSON [3] if the database is imple-

mented using mongoDB [8].

To reduce this processing latency incurred by data struc-

ture translations, we propose a paradigm where the AMF

and the UPF make non-blocking calls to the database while

writing data, whereas the SMF continues to make blocking

calls to the database (Figure 2c). This ensures that the SMF

still maintains the correct UE state at the transactional level,

and all three functions are fully stateless without violating

cloud-native principles.

Delete-create AMF API. A final optimization we will

explore is the API to update the database. NoSQL databases

like MongoDB use WiredTiger storage engine [12] which

reads and writes data through in-memory B+ tree data struc-

tures [13]. When an update adds new fields, the B+ tree

executes search, insert, swap or move operations of key-

value pairs across its leaf nodes. This makes the total time

complexity 𝐶 ×𝑂 (𝑙𝑜𝑔 𝑛) where 𝑛 is the number of keys and

𝐶 is the number of new fields. The larger the document and

the number of new fields, the longer it takes to modify it. To

address this performance issue, we will explore using two

separate APIs (delete and then create) to perform the update

operation with time complexity 1 +𝑂 (𝑙𝑜𝑔 𝑛).
All transactions between the SMF and other NFs that pro-

cess calls can be optimized as discussed above. We list these

transactions as defined by 3GPP in Table 1.

4 EVALUATION
The goals of our experiments are to quantify the costs of pro-

cedural and transactional statelessness (Section 2), and gain

a preliminary understanding of the benefits of optimizations

to transactional statelessness (Section 3).

4.1 Setup
We deploy the components of 5G cellular system architec-

ture in a cloud-native fashion using open5gs [5], an open-

source 5GS implementation written in C. To simulate RAN

75



ANCS ’21, December 13–16, 2021, Lafayette, IN, USA U. Kulkarni et al.

NF Transaction

1 AMF Create SM Context

2 AMF Update SM Context

3 AMF Release SM Context

4 AMF N1/N2 Message Transfer

5 UPF PFCP Session Establishment

6 UPF PFCP Session Modification

7 UPF PFCP Session Deletion

Table 1: SMF transactions with other
NFs

600 700 800 900 1000
Simultaneous Requests

6

8

10

12

14

16

Ti
m

e 
(s

)

Stateful
Procedural Stateless
Transactional Stateless

Figure 3: Stateful and
stateless paradigms

600 700 800 900 1000
Simultaneous Requests

8

9

10

11

12

13

14

15

16

Ti
m

e 
(s

)

AMF-SMF Share Database
All NFs Share Database
Non-Blocking
Transactional Stateless

Figure 4: Transactionally-
stateless optimizations

interfaces for the UE and gNB, we use the open-source tool

UERANSIM [4] which is written in C++.
We use CloudLab [29] servers where we create a network

with 15 nodes, 11 of which constitute a Kubernetes cluster

with one master and ten worker nodes. We deploy open5gs

v2.3.6 along with mongoDB v5.0.3 on the cluster. The re-

maining four nodes are used for UERANSIM v3.2.2, where two

nodes are assigned as two separate gNBs and the remaining

two as UEs. All nodes are of type m510 [21], equipped with

Intel Xeon D-1548 processor supporting x86_64 architecture

consisting of 16 CPUs with maximum speed of 2 GHz. The

nodes run on 5.4.0-77-generic kernel with Ubuntu 20.04 and

Kubernetes v1.22.4. We use Helm charts from the publicly

available repository opensource-5g-core-service-mesh [9]

to manage these cloud-native open5gs functions.

We make the following changes to the three open-source

implementations: (1) open5gs: Since the default open5gs im-

plementation is stateful, we modify open5gs to add inter-

actions with the database for the transactions listed in Ta-

ble 1. (2) UERANSIM: Instead of creating a TUN interface for

each UE, we modify UERANSIM to write the UE IP address

to a file to ensure that the system is not slowed down due

to 100s of interfaces. (3) opensource-5g-core: We modified

the Helm charts to match the templates with our Kuber-

netes cluster environment. All our changes are available at

https://github.com/UmakantKulkarni/stateless5g.

4.2 Methodology
We experiment with the UE-initiated PDU session establish-

ment request procedure, defined in section 4.3.2.2 of [17].

We trigger this procedure through “UE registration,” which

involves communication between almost all functions within

the 5G system (UE, RAN, AMF, SMF, UPF, PCF, UDR, UDM,

NRF, NSSF and AUSF).

We compare seven alternatives: (1) Stateful NFs, (2) Fully

transactionally-stateless NFs, (3) Procedurally-stateless NFs,

(4) All NFs share the database, (5) Only AMF and SMF share

the database, (6) Non-blocking AMF and UPF APIs, and (7)

Delete-Create AMF API. We vary the number of simultane-

ous requests made between 100 and 1000, in steps of 100.

We repeat each set of experiments ten times and compute

system and application-level statistics for successful runs.

4.3 Results
4.3.1 Procedural and Transactional Statelessness. As discussed
earlier, with procedural statelessness, NFs read from data-

base when they receive a trigger at the start of a procedure.

With transactional statelessness, NFs read and write during

each transaction listed in Table 1. We compare these two

paradigms with stateful NFs based on the time taken by the

5GS to complete a UE-initiated PDU session establishment

request procedure for a given number of simultaneous re-

quests. The time taken is the difference between the time

when the first message arrives at the AMF from the gNB and

the time when the last response arrives at the AMF from the

SMF. We choose the AMF for this time computation because

it is the first NF in the service function chain responsible for

processing the procedure.

Figure 3 plots the mean values and 95% confidence inter-

vals of the time taken for the cases of 600 to 1000 simultane-

ous requests. Since there is a single read and a single write

from/to the database per NF, no significant time difference

between the stateful and procedurally-stateless implementa-

tions is observed. The mean time difference is only 3%, which

can go up to 10% maximum (for 100 to 1000 requests). In con-

trast, if we compare the stateful and transactionally-stateless

implementations, the mean time difference is around 56%

which goes up to 71%. This is because there are seven addi-

tional read and write interactions with the database by the

three NFs (the AMF, SMF and UPF).

4.3.2 Sharing Alternatives. We compare the transactionally-

stateless paradigm with the first optimization that we pro-

pose in Section 3, i.e., sharing UE state in the database among

the NFs. We experiment with two alternatives for sharing

(Figure 1): (1) The AMF, SMF and UPF all share the UE state

76

https://github.com/UmakantKulkarni/stateless5g


The Cost of Stateless Network Functions in 5G ANCS ’21, December 13–16, 2021, Lafayette, IN, USA

600 700 800 900 1000
Simultaneous Requests

600

700

800

900

1000

Ti
m

e 
(m

s)

Delete-Create API
Update API

Figure 5: Time spent by mongoDB
with update and delete-create

Stateful Transactional
Stateless

AMF-SMF
Share DB

Non-Blocking
0%

20%

40%

60%

80%

CP
U

CPU
Q Length

0

20

40

60

80

Qu
eu

e 
Le

ng
th

Figure 6: CPU and queue length at
1000 sessions

0
30
60
90

CP
U 

(%
)

AMF

0

50

Q 
Le

ng
th

0
25
50
75

CP
U 

(%
)

SMF

0

20

Q 
Le

ng
th

0 2500 5000 7500 10000 12500 15000
Time (ms)

0
15
30
45

CP
U 

(%
)

UPFCPU
Q Length (right)

0

1

Q 
Le

ng
th

Figure 7: Time series of CPU and
queue length at 1000 sessions

stored in the database, and (2) Only the AMF and SMF share

the UE state stored in the database.

Although the first approach where all three NFs share the

UE state is ideal, it may not be practical from the network

operator’s point of view. This is because, as specified in

section 5.13 of [18], the UPF should be placed close to the UE

to support edge computing. In contrast, the database should

be on the same premises or vicinity as other control-plane

NFs (AMF and SMF). Thus, we experiment with both types

of implementations to explore the latency implications if the

UPF is not located close to the database.

From Figure 4, we see that both types of sharing yield

gains by reducing the number of write transactions to the

database. The improvements over traditional transactional

statelessness are 10% on average, and can go up to 21% (for

100 to 1000 requests).

4.3.3 Non-Blocking AMF and UPF. We now experiment with

an approach where the AMF and UPF make non-blocking

calls to the database for the second, fifth, and sixth transac-

tions listed in Table 1. We create a thread pool during NF

initialization, and use a thread from this pool (stack) to seri-

alize and upload the data to the database. Once the upload

is complete, the thread is pushed back onto the stack. This

approach saves time over creating and destroying a thread

during each transaction.

We plot the time taken to complete a procedure in Figure 4

and find that this approach performs better than default

transactional statelessness with an average reduction ofmore

than 6%, and a maximum reduction of 17% (for 100 to 1000

requests). We may also benefit from making non-blocking

calls with other transactions listed in Table 1.

4.3.4 Database APIs. We explore another optimization by

exercising the fourth transaction in Table 1 in two ways: (1)

using the update API defined in the mongoDB driver [7], and

(2) using a sequence of delete and create APIs. Although the

number of interactions with the database increases with the

delete-create API, the total (read + write) time that mongoDB

spends on these operations is on an average 3.5% lower than

the update API (Figure 5). Thus, we see reduction in the

procedure completion time by on average 2.5%, and up to

12% (for 100 to 1000 requests). This may be important when

the 5G control plane is deployed on a public cloud where

service providers are charged based on time consumed on

each database compute as described in [2] and [10].

4.3.5 SystemMetrics. Since additional computing is involved

in case of transactional statelessness for serializing and de-

serializing data, we expect to see a higher average CPU us-

age by NFs in this case. We find that the opposite is true.

Therefore, we take an in-depth look at system metrics to

investigate the reasons. For each event trigger, we use epoll

to calculate the application queue lengths and compare it to

the CPU usage for each NF during the course of a procedure

for four paradigms: stateful, transactionally-stateless, non-

blocking transactionally-stateless and stateless with shared

UE state among the AMF and SMF. As seen in Figure 6, as

the cost of statelessness increases, the average NF CPU us-

age (over 300 ms) decreases. To explain this behavior, we

plot the time series for one of our transactionally-stateless

experiments to observe the change in queue length and CPU

for AMF (top), SMF (middle) and UPF (bottom).

Figure 7 shows that the CPU spikes immediately after

an increase in the queue length. This trend starts at the

first NF in the service chain (AMF) and propagates to the

following NFs (SMF, UPF) in the chain. As SMF and UPF

process calls and serialize/de-serialize the data, AMF waits

for responses from them. Thus, a stateless AMF spends a

longer time waiting, making its average CPU usage per unit

time lower than with the stateful paradigm. This can be

confirmed from Figure 7, where CPU and queue length spikes

move to the right as we traverse the service function chain

from the first to last NF. The last spike in the AMF queue

length represents processing the responses from SMF and

UPF on which the AMF was waiting.

The queue lengths for the non-blocking and transactionally-

stateless paradigms in Figure 6 confirm that the total number

77



ANCS ’21, December 13–16, 2021, Lafayette, IN, USA U. Kulkarni et al.

of messages is the same. The non-blocking paradigm does

not wait for responses from the database, and hence it pro-

cesses the sessions faster than the transactionally-stateless

paradigm. This can be confirmed by the higher CPU usage

observed in Figure 6 and the lower time taken in Figure 4.

5 DISCUSSION AND FUTUREWORK
5G with stateless NFs: Our analysis indicates that frequent
state fetch/update operations performed by stateless NFs

significantly contribute to latency. Since a single database

instance may store data from multiple NFs within the service

function chain, even a small delay for each NF can result

in significant latency for the entire procedure. Additionally,

since current implementations use JSON-based messages to

communicate with the database, NFs incur high overhead

during the message serialization and de-serialization process

associated with each database interaction.

5GS implementations must therefore minimize database

interactions involved in a procedure. This can be achieved

by allowing NFs in a service function chain to piggyback

user data required to process a user request along with the

request. That is, an NF at the beginning of a service func-

tion chain can fetch the user state required to complete the

transaction and then forward this state to subsequent NFs in

the chain. While this may require the network to transmit

larger amounts of data, such a solution, coupled with Binary

Large Object (BLOB) or in-memory databases and using pro-

tocol buffers [11] for serialization, can reduce the impact of

database communication latency on performance.

Request-responsemodel with stateless NFs: 5GS uses
the standard request-response model in which each request

sent receives a response. This entails that both the request

and response messages (including failure responses) traverse

the entire service function chain. While the request-response

model was necessary in systems where the state of a user

was maintained (created/updated/deleted) at each NF, this

communication model has limited utility in cases in which

stateless NFs maintain user state in remote databases. Since

stateless NFs must fetch state from the remote database, the

NFs can use the database state to infer the success/failure of

previous transactions in an ongoing procedure, eliminating

the need for propagation of some response messages through

the service function chain. This approach would reduce the

number of messages required to complete a procedure, but

the performance gains, resource utilization, and correctness

of network communication in this case needs to be evaluated.

Finally, since the HTTP/2-based REST communication

mandates a request-response model, that is, HTTP/2 requires

a response to each request, 5G control-plane operations can

also benefit from the use of QUIC/gRPC-based communica-

tion, e.g., as described in [24].

6 RELATEDWORK
State management: Our work follows the principles of

stateless network functions described in [22] and [23], which

decouple the state from NFs by introducing an external data

store. That prior work considers NFs such as NATs, which

are simpler in functionality than most 5G network func-

tions. Hence, certain optimizations described in [23], such

as avoiding database locking while reading, are not directly

applicable to 5G functions.

State management in cellular networks: Our work is

inspired by PEPC [27], Contain-ed [30], and DPCM [26],

which highlight the benefits of sharing state among net-

work functions. Unlike PEPC which consolidates multiple

functions within the 4G control plane into a single slice, we

share the UE state stored in the database among different

functions. Thus, optimizations described in our work strictly

follow 3GPP-recommended design guidelines.

Similar to ourwork, the lock-based 5GNF design described

in [25] uses a global data structure to share the UE state,

between AMF threads in their case. As the authors point

out, the lockless AMF implementation (described in section

3 of [25]) encounters similar challenges to those described

in Section 2.2 since UE-aware routing is required to direct

messages to a specific virtualized NF.

Neutrino [19] replicates the UE state from primary to sec-

ondary control-plane functions for redundancy in case of NF

restarts or failure. However, this non-blocking synchroniza-

tion takes place at the procedural level, which is less fault

tolerant and more resource consuming than the transaction-

level optimizations described in this paper.

Parallelism in cellular networks: Similar to our non-

blocking optimization, DPCM [26] and logic-based NFs [28]

parallelize control-plane procedures in 4G networks. How-

ever, our non-blocking approach parallelizes control-plane

procedures with database transactions within 5G. Thus, our

model does not make changes to inter-NF transactions.

7 CONCLUSIONS
In this paper, we have introduced a number of state man-

agement optimizations for 5G networks, and compared their

cost to a stateful implementation. Procedural statelessness

has a low performance overhead, but has robustness con-

cerns. Transactional statelessness is robust, at the cost of

higher performance overhead. This motivates us to propose

optimizations to transactional statelessness. Our results indi-

cate that the shared state optimization is the most effective,

followed by non-blocking APIs, then delete-create database

APIs. Applying these optimizations to the entire call flow

would increase the performance gains. We believe that this

work serves as a first but important step in exploring stateless

paradigms in the 5G system.

78

Quincy Peng



The Cost of Stateless Network Functions in 5G ANCS ’21, December 13–16, 2021, Lafayette, IN, USA

REFERENCES
[1] About 3GPP. https://www.3gpp.org/about-3gpp.

[2] Amazon DynamoDB Pricing for Provisioned Capacity. https://aws.

amazon.com/dynamodb/pricing/provisioned/.

[3] BSON - Binary JSON Serialization. https://bsonspec.org/.

[4] GitHub - aligungr/UERANSIM: Open source 5G UE and RAN (gNodeB)

implementation. https://github.com/aligungr/UERANSIM.

[5] GitHub - open5gs/open5gs: Open5GS is a C-language Open Source

implementation for 5G Core and EPC. https://github.com/open5gs/

open5gs.

[6] JSON - JavaScript Object Notation. https://www.json.org/json-en.html.

[7] MongoDB C Driver — MongoDB C Driver 1.19.0. http://mongoc.org/.

[8] Mongodb the most popular database for modern apps. https://www.

mongodb.com.

[9] opensource-5g-core-service-mesh. https://bitbucket.org/infinitydon/

opensource-5g-core-service-mesh/src/main/.

[10] Pricing - Azure Cosmos DB | Microsoft Azure. https://azure.microsoft.

com/en-us/pricing/details/cosmos-db/.

[11] Protocol Buffers. https://developers.google.com/protocol-buffers.

[12] Storage Engines — MongoDB Manual. https://docs.mongodb.com/

manual/core/storage-engines/.

[13] WiredTiger: Tuning page size and compression. http://source.

wiredtiger.com/mongodb-3.4/tune_page_size_and_comp.html.

[14] 3GPP. Study on the Nudsf Service Based Interface. Technical Re-

port (TR) 29.808, 3rd Generation Partnership Project (3GPP), 12 2019.

Version 16.0.0.

[15] 3GPP. 5G System; Access and Mobility Management Services; Stage

3. Technical Specification (TS) 29.518, 3rd Generation Partnership

Project (3GPP), 6 2021. Version 17.2.0.

[16] 3GPP. 5G System; Session Management Services; Stage 3. Technical

Specification (TS) 29.502, 3rd Generation Partnership Project (3GPP),

6 2021. Version 17.1.0.

[17] 3GPP. Procedures for the 5G System (5GS). Technical Specification

(TS) 23.502, 3rd Generation Partnership Project (3GPP), 6 2021. Version

17.1.0.

[18] 3GPP. System architecture for the 5G System (5GS). Technical Specifi-

cation (TS) 23.501, 3rd Generation Partnership Project (3GPP), 6 2021.

Version 17.1.1.

[19] Ahmad, M., Jafri, S. U., Ikram, A., Qasmi, W. N. A., Nawazish, M. A.,

Uzmi, Z. A., and Qazi, Z. A. A low latency and consistent cellular

control plane. In Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communication
(New York, NY, USA, 2020), SIGCOMM ’20, Association for Computing

Machinery, p. 648–661.

[20] Chandramouli, D., Chandrashekar, S., Maeder, A., Niemela, T.,

Theimer, T., and Thiebaut, L. Next Generation Network Architecture.
John Wiley & Sons, Ltd, 2019, ch. 4, pp. 127–223.

[21] CloudLab. m510 server. https://www.utah.cloudlab.us/portal/show-

nodetype.php?type=m510.

[22] Kablan, M., Alsudais, A., Keller, E., and Le, F. Stateless network

functions: Breaking the tight coupling of state and processing. In

Proceedings of the 14th USENIX Conference on Networked Systems De-
sign and Implementation (USA, 2017), NSDI’17, USENIX Association,

p. 97–112.

[23] Khalid, J., and Akella, A. Correctness and performance for stateful

chained network functions. In Proceedings of the 16th USENIX Con-
ference on Networked Systems Design and Implementation (USA, 2019),

NSDI’19, USENIX Association, p. 501–515.

[24] Kiran Buyakar, T. V., Agarwal, H., Tamma, B. R., and Franklin,

A. A. Prototyping and load balancing the service based architecture of

5g core using nfv. In 2019 IEEE Conference on Network Softwarization
(NetSoft) (2019), pp. 228–232.

[25] Kumar, A., Naik, P., Patki, S., Chaudhary, P., and Vutukuru, M.

Evaluating network stacks for the virtualized mobile packet core. In

Proceedings of Asia-Pacific Workshop on Networking (APNet) (June
2021).

[26] Li, Y., Yuan, Z., and Peng, C. A control-plane perspective on reducing

data access latency in lte networks. In Proceedings of the 23rd An-
nual International Conference on Mobile Computing and Networking
(New York, NY, USA, 2017), MobiCom ’17, Association for Computing

Machinery, p. 56–69.

[27] Qazi, Z. A., Walls, M., Panda, A., Sekar, V., Ratnasamy, S., and

Shenker, S. A high performance packet core for next generation

cellular networks. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (New York, NY, USA, 2017),

SIGCOMM ’17, ACM, pp. 348–361.

[28] Raza, M. T., Kim, D., Kim, K. H., Lu, S., and Gerla, M. Rethinking

LTE network functions virtualization. In 2017 IEEE 25th International
Conference on Network Protocols (ICNP) (Oct 2017), pp. 1–10.

[29] Ricci, R., and Eide, Eric et al. Introducing CloudLab: Scientific

infrastructure for advancing cloud architectures and applications. The
magazine of USENIX & SAGE 39, 6 (2014), 36–38.

[30] Sheoran, A., Sharma, P., Fahmy, S., and Saxena, V. Contain-ed: An

NFV micro-service system for containing e2e latency. In Proceedings
of the Workshop on Hot Topics in Container Networking and Networked
Systems (2017), HotConNet ’17, pp. 12–17.

79

https://www.3gpp.org/about-3gpp
https://aws.amazon.com/dynamodb/pricing/provisioned/
https://aws.amazon.com/dynamodb/pricing/provisioned/
https://bsonspec.org/
https://github.com/aligungr/UERANSIM
https://github.com/open5gs/open5gs
https://github.com/open5gs/open5gs
https://www.json.org/json-en.html
http://mongoc.org/
https://www.mongodb.com
https://www.mongodb.com
https://bitbucket.org/infinitydon/opensource-5g-core-service-mesh/src/main/
https://bitbucket.org/infinitydon/opensource-5g-core-service-mesh/src/main/
https://azure.microsoft.com/en-us/pricing/details/cosmos-db/
https://azure.microsoft.com/en-us/pricing/details/cosmos-db/
https://developers.google.com/protocol-buffers
https://docs.mongodb.com/manual/core/storage-engines/
https://docs.mongodb.com/manual/core/storage-engines/
http://source.wiredtiger.com/mongodb-3.4/tune_page_size_and_comp.html
http://source.wiredtiger.com/mongodb-3.4/tune_page_size_and_comp.html
https://www.utah.cloudlab.us/portal/show-nodetype.php?type=m510
https://www.utah.cloudlab.us/portal/show-nodetype.php?type=m510

	Abstract
	1 Introduction
	2 Stateless 5GS Functions
	2.1 Procedural and Transactional Statelessness
	2.2 Drawbacks of Procedural Statelessness
	2.3 Cost of Transactional Statelessness

	3 Reducing the Cost of Transactional Statelessness
	4 Evaluation
	4.1 Setup
	4.2 Methodology
	4.3 Results

	5 Discussion and Future Work
	6 Related Work
	7 Conclusions
	References



